Executive Summary

Second Expert Workshop

on the development of tests for progression of latent tuberculosis infection (LTBI) to active disease.

1st July 2016

Organized by the New Diagnostics Working Group
Hosted by San Raffaele Hospital, Milan, Italy
Introduction

Among the key components of the first pillar of the WHO END TB strategy (1) is preventive treatment of persons at high risk of developing active disease. A direct measurement tool for *M. tuberculosis* (Mtb) infection in humans is currently unavailable. Research into cost-effective diagnostic tests with improved performance and predictive value for reactivation TB is needed (2).

The Task Force on latent TB infection (LTBI) of the New Diagnostics Working Group (NDWG) and its partners met in Milan, Italy on 1st July 2016 to gather expert advice.

Objectives of the NDWG LTBI Task Force

<table>
<thead>
<tr>
<th>Conception</th>
<th>TPP</th>
<th>Guide for evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>new evidence on the nature and significance of LTBI and its relevant implications on the conceptualization of diagnostics</td>
<td>development of the Target Product Profile (TPP) for a test of progression of LTBI</td>
<td>development of guidance to optimized study design that will produce data for policy development</td>
</tr>
</tbody>
</table>

Nature and significance of LTBI and limitations of diagnostic tests

Current diagnostic tests – interferon gamma release assays (IGRAs) and the tuberculin skin test (TST) – identify historical exposure and immune sensitization to Mtb. Results often remain positive post-infection, either spontaneously or with preventive treatment. They have a poor positive predictive value (PPV) for predicting active TB, resulting in a very high ‘number need to treat’ (NNT) to prevent one TB case through preventive therapy.

What tests are needed – Two novel options

![Diagram showing the progression of LTBI and diagnostic tests](image)

- **Unstable LTBI**
 - Predicts that disease cannot happen because there is no persistent infection
 - “Persistent infection test”

- **Subclinical active phase**

- **Clinical TB**
 - Predicts that disease occurs because it has already started...
 - “Incipient TB test”

Among the key components of the first pillar of the WHO END TB strategy (1) is preventive treatment of persons at high risk of developing active disease. A direct measurement tool for *M. tuberculosis* (Mtb) infection in humans is currently unavailable. Research into cost-effective diagnostic tests with improved performance and predictive value for reactivation TB is needed (2).
Tests for persistent infection
The first type should identify those with persistent infection (i.e., results are negative after infection has cleared). Such a test will likely not identify those at greatest risk of progressing to TB due to a low PPV, but could be used to single out those at high risk of progression to severe disease, such as patients with HIV infection, those awaiting anti-TNF-alpha treatment, and infants. These are tests for persistent infection.

Tests for incipient disease
The second type should detect that the disease is active while the patient is still asymptomatic. It would be highly predictive for clinical disease, in particular for those recently exposed. These are defined as tests for incipient disease. The recent 16-transcript disease risk signature recently described by Zak et al (3) is an example of a biomarker that may fulfill this role. The incipient TB test should have a semi-quantitative read-out and might potentially revert to negative after treatment.

Target product profile for a test of progression
The reasonable time horizon for a test of incipient TB should be prediction of future progression to active TB within two years, taking into account that ~60% of progression occurs in this timeframe (~45% in year one). Acceptable PPV and NNT values—as identified by patients, clinicians, and policy makers—were proposed. Minimal performance is represented by an increase of the PPV by a factor of ~2 compared to IGRAs. Optimal performance is represented by an increase of the PPV by ~5 compared to IGRAs.

The test should be developed with combinations of sensitivity/specificity that are compatible with these values. Expectations for accuracy should not be the same for a predictive test as they are for a diagnostic test: even with a very high sensitivity and specificity (99%), a low PPV would be reached (67%). The specificity threshold for candidate tests for incipient TB should be 50%.

PPV in a given setting should be considered as an important parameter to guide decisions on implementation. Different country programmes will have differing preferences in the trade-off between sensitivity and specificity—e.g., re-testing of individuals with an initial negative result could be an attractive option in programmes that aim to maximize sensitivity.

‘Positive Predictive Value’ according to Sens/Spec for risk of progression

Note that a test with Se/Sp 99/99 would yield PPV = 67%
To be consistent with the WHO GRADE process for endorsement of a diagnostic test, the test evaluation programme should mainly establish its ability to predict active TB and its health impact from both patient and community perspectives.

A) Assessing predictive ability
The study population should be represented by individuals at risk of being infected and at risk of disease progression and who are observed over time. Ideally, individuals who do not receive preventive treatment would be included in order to avoid biased results (i.e. contacts of MDR-TB patients and other contacts that do not accept the offer of preventive treatment).

B) Assessing public health impact
Comparative, randomized intervention studies around the public health impact should assess efficacy, cost-effectiveness, treatment adherence, and side effects. The comparator is represented by standard practice (i.e. test and treat strategy based on TST and/or IGRA or no LTBI testing and treating at all).

Guidance to optimized study design
To be consistent with the WHO GRADE process for endorsement of a diagnostic test, the test evaluation programme should mainly establish its ability to predict active TB and its health impact from both patient and community perspectives.

Example of study design for evaluating predictive ability of the test

Study outcomes
- **Predictive utility of the test**
 - Sensitivity
 - Specificity
 - PPV, NPV, NNS
 - RR, IR, IRR

![Study outcomes diagram](image)
Example of study design in populations that are currently **not** tested for LTBI

Study enrollment
- **Prospective follow-up (18-24 months)**

Randomize

Test +	Preventive treatment	# incident TB cases
Test -	Preventive treatment	# incident TB cases
Test -	No preventive treatment	# incident TB cases
Test -	No preventive treatment	# incident TB cases

Study outcomes
- **Predictive utility of the test**
 - Δ Incident cases
 - RR, IR, IRR, sensitivity and specificity
- **Treatment efficacy**
 - Δ Incident cases
- **Overall**
 - NNS and NNT
 - Costs
 - Cost effectiveness

Source: Adjusted from M. Hatherill, Union Conference 2015, NDWG symposium, Design of CORTIS trial

Example of study design: evaluating public health impact in populations that are currently tested for LTBI tests

Study enrollment
- **Prospective follow-up (18-24 months)**

Randomize

Test +	Preventive treatment	# incident TB cases
Test -	Preventive treatment	# incident TB cases
Test -	No preventive treatment	# incident TB cases
Test -	No preventive treatment	# incident TB cases

Study outcomes
- **Δ Incident cases**
- **Δ AEs**
- **Δ Costs**
- **Δ NNS and NNT**
- **Cost effectiveness**

References

List of participants

NDWG LTBI Task Force

Alberto Matteelli, Coordinator
University of Brescia
Italy

Susanna Capone
University of Brescia
Italy

Gavin Churchyard
Aurum Institute
South Africa

Daniela Cirillo, NDWG Co-Chair
San Raffaele Research Institute
Italy

Frank Cobelens
AIGHD and KNCC
The Netherlands

Christopher Gilpin
WHO Global TB Programme
Switzerland

Delia Goletti
National Institute for Infectious Diseases
Italy

Amita Gupta (attending remotely)
Johns Hopkins School of Public Health
USA

Sandra Kik
KNCC, The Netherlands

Samuel Schumacher
FIND
Switzerland

Alessandra Varga, NDWG Secretariat
FIND
Switzerland

Experts

Helen Ayles
LSHTM / Zambart
UK / Zambia

Hanif Esmail
Oxford University Hospital
UK

David Lewinsohn (attending remotely)
University of Oregon
Chair, Working Group on New Vaccines
USA

Christian Lienhardt
WHO Global TB Programme
Switzerland

Anna Mandalakas
Baylor College of Medicine
USA

Thomas Scriba (attending remotely)
University of Cape Town
South Africa

Industry Representatives

William Cruikshank
Oxford Immunotec
UK

Ludwig Deml
Lophius Biosciences GmbH
Germany

Paola Legnani
QIAGEN
UK

Oksana Markova
Generium
Russia

Morten Ruhwald
Statens Serum Institut
Denmark

StopTB Partnership
New Diagnostics Working Group
www.stoptb.org