Sequencing in the real world of TB Are we ready for prime time ?

> Camilla Rodrigues _{MD} Consultant Microbiologist Hinduja Hospital,Mumbai India

The real world of tuberculosis

Case

SK 41 M 8 Nov 2010 : LRKT, immuno suppresives 11 June 2011 : Fever, bleeding PR, Cecal ulcer biopsy : nonspecific colitis Bone marrow biopsy : normal

Fever continued **22 June 2011 :** CT chest : necrotic sub carinal LN mass

Patient refused a CT guided biopsy Empirically started on INH,EMB,PZA,LVF

11 July 2011: readmitted with pancytopenia

Skin biopsy septic vasculitis

Tuberculosis cutis orificialis

13 July 2011: miliary TB Sepsis Tuberculosa Acutissima hematogenous, disseminated TB & shock

16 July 2011: Hypotension, acidosis, massive GI bleed & **Expired**

16 July 2011 : Bone marrow culture(17 June) : MTB LPA GenoType MTBDR *plus* & *sl* : XDR Confirmed by MGIT DST

10 August 2011 : Blood culture (11 July) : XDR TB

What did this case teach us ?

In the Immune compromised, in high DR endemic regions (poly R, MDR, pre XDR, XDR)

Simply cannot treat TB empirically
Need to get DST results fast

With increasing drug resistance, DST is vital

Rapid diagnosis with DST is fundamental

Outline

- Empiric treatment with local lab epidemiology
- Pyrosequencing applications
- Expanding the mutation knowledge base
- Sequencing directly from clinical samples

Regional prevalence specifics for DR conferring mutations

Drug	Refere nce Genes	Mutations	% global R	% Mumbai	% Moldova	% South Africa
INH	katG inhA- fabG1	S315T, S315N, S315I - c15t,-17t	78.5	89 18	92 46	44 47
RIF	rpoB	S450L, D435V, H445Y, H 445D H445R,S450W,H445L, D435G,H445C, H445G Q432K, Q432P, D435F, Q432L,F433,S450F,L452P	83.1	83 2 3	84 2 2	17 57 Iow
MXF	gyrA	D94G, A90V, D94A, D94N/Y	82.8	46 26 8/8	6 19 19	46 9 9
KAN	rrs eis	A1401g , c1402t, g1484t -c14t , -c12t -g10a	81.7	85-95 4	7 53	85-95 4
AMK	rrs	A1401g, g1484t	78.6	85-95	33	85-95
CAP	rrs tylA	A1401g , c1402t, g1484t N236K	77	85-95	40	85-95

Paolo M Eur Respir J 2017;50:1701354 Georghiou SB. AMAC 2016; doi:10.1128/AAC.00222

Use of Xpert MTB/RIF in Decentralized Public Health Settings and Its Effect on Pulmonary TB and DR-TB Case Finding in India

Kuldeep Singh Sachdeva¹, Neeraj Raizada²*, Achuthan Sreenivas³, Anna H. van't Hoog⁴, Susan van den Hof^{4,5}, Puneet K. Dewan^{3^a}, Rahul Thakur², R. S. Gupta¹, Shubhangi Kulsange², Bhavin Vadera², Ameet Babre², Christen Gray², Malik Parmar³, Mayank Ghedia¹, Ranjani Ramachandran³, Umesh Alavadi², Nimalan Arinaminpathy⁶, Claudia Denkinger², Catharina Boehme², C. N. Paramasivan²

Implementation of Xpert MTB / RIF for suspected PTB at the district level, **increased case notification by 39% & rifampicin resistance notification by five fold**

PLoS ONE 10(5):e0126065. doi:10.1371/journal.pone.0126065

Resistance Patterns among Multidrug-Resistant Tuberculosis Patients in Greater Metropolitan Mumbai: Trends over Time

Alpa Dalal¹, Akshay Pawaskar², Mrinalini Das³, Ranjan Desai⁴, Pralhad Prabhudesai⁵, Prashant Chhajed⁶, Sujeet Rajan⁷, Deepesh Reddy⁸, Sajit Babu⁹, Jayalakshmi T. K.¹⁰, Peter Saranchuk³, Camilla Rodrigues¹¹, Petros Isaakidis³*

Higher rates of Pre XDR TB than MDR TB (56.8% vs 29.4%)

PLoS One 2015 :10(1):e0116798

Rifampicin-resistant tuberculosis: what is the best initial empiric regimen in Mumbai, India?

TABLE 1 Positive predictive values of rifampicin resistance in predicting resistance to individual drugs in the derivation and validation cohorts

Drug	Positive predictive value of rifampicin resistance in predicting resistance (derivation cohort)	Positive predictive value of rifampicin resistance in predicting resistance (validation)
Isoniazid	99 (97–100)	100 (98.6–100)
Streptomycin	93 (89–96)	95.4 (92-97.6)
Pyrazinamide	83 (78–88)	66 (59.9–71.8)
Ethambutol	77 (72–83)	79.2 (73.7-83.9)
Ofloxacin	69 (63-75)	70.7 (64.7-76.1)
Moxifloxacin	66 (60-72)	63.7 (57.5-69.6)
Ethionamide	60 (54–66)	54.4 (48.2-60.6)
PAS	15 (10–20)	14.3 (10.3-19.1)
Kanamycin	13 (9–18)	11.2 (7.6–15.7)
Amikacin	8 (5–12)	8.5 (5.4–12.6)
Capreomycin	6 (4-10)	8.1 (5.1–12.1)
Clofazimine	1 (0–3)	1.2 (0.2–3.3)

J Mullerpattan et al doi.org.10.1183/13993003.02182.2016

At HNH, in Rif R the best derived initial empiric regimen

SLI (KAN, CAP, AMK) Clofazimine Linezolid Cycloserine Ethionamide PAS Moxifloxacin

J Mullerpattan et al doi.org.10.1183/13993003.02182.2016

Stratifying FQ R mutations that maybe overcome with HD MOX

Molecular tests may better predict treatment outcomes gyrA A90V & gyrA D94A maybe treated with HD MOX AMERICAN SOCIETY FOR MICROBIOLOGY AND Chemotherapy AMERICAN Antimicrobial Agents Moxifloxacin Improves Treatment Out-Ofloxacin-Resistant Multidrug Jung-Yien Chien, a.b.d Shun-T Fluoroquinolone Resistance Mutation Detection Is Equivalent to Culture-Based Drug Sensitivit-Predicting Multidrug-Resistant T-1 Correlating Minimum Inhibitory Concentrations of ofloxacin and Outcome: A Retrospectimoxifloxacin with gyrA mutations using the genotype MTBDRsI assay Maha R. Farhat, ¹² Karen R. Jacobson ³ DRUG DISCOVERY AND RESISTANCE Priti Kambli^a, Kanchan Ajbani^a, Meeta Sadani^a, Chaitali Nikam^a, Anjali Shetty^a, Zarir Udwadia ^b, Timothy C. Rodwell ^c, Antonino Catanzaro ^c, Camilla Rodrigues ^a,

LPA DST : clinical implications with positive mutant bands

Mutation	Isoniazid	Ethionamide	Mutation	Moxiflox	Levoflox	Ofloxacin
katG S315T MUT 1	X	\checkmark	<i>gyrA</i> D94 / (N /Y) /G /	X Check DST at 2	X	X
inhA	HD	X	MUT 3B / 3C			
MUT1 C15T MUT 2 A16G MUT3 A / B 8A / C			<i>gyrA</i> A90V MUT 1	√HD	X	X
katG S315T plus inhA	X	X	gyrA D94A MUT3A	√ HD	X	X
Mutation	Rifampicin	Rifabutin	Mutation	Kanamycin	Amikacin	Capreo
<i>rpoB</i> S531L MUT3 H526Y/D	X	X	rrs A1401G MUT 1	X	X	X check DST
MUT 2A/2B			rrs G1484C MUT 2	X	X	X
<i>гроВ</i> D516V	X	Check DST				.1
MUT 1			e/s promoter C14T MUT 1	X		N

Sequencing in the DR TB world

Sanger Sequencing
Pyrosequencing (PSQ)
NGS (Targeted & WGS)

Predicting Extensively Drug-Resistant *Mycobacterium tuberculosis* Phenotypes with Genetic Mutations

Timothy C. Rodwell,^a Faramarz Valafar,^b James Douglas,^c Lishi Qian,^c Richard S. Garfein,^a Ashu Chawla,^b Jessica Torres,^b Victoria Zadorozhny,^b Min Soo Kim,^b Matt Hoshide,^c Donald Catanzaro,^b Lynn Jackson,^a Grace Lin,^d Edward Desmond,^d Camilla Rodrigues,^e Kathy Eisenach,^f Thomas C. Victor,^g Nazir Ismail,^h Valeru Crudu,¹ Maria Tarcela Gler,^J Antonino Catanzaro^a

Sensitivity and Specificity of Mutations for Predicting M/XDR-TB Phenotypes in India, Moldova, Philippines and South Africa

Phenotype	Primary Gene/s Associated with Resistance	No. of unique SNPs	Sensitivity	Specificity
INH ^R	katG, inhA prom.	6	±95% (n=894)	98-100%
RIF ^R	rpoB	15	±97% (n=777)	97-100%
MOX/OFX ^R	gyrA	8	±92% (n=562)	99-100%
AMK ^R	rrs	1	±86% (n=293)	99-100%
KAN ^R	<i>rrs, eis</i> promoter	6	±88% (n=404)	96-100%
CAP ^R	rrs	1	±87% (n=279)	98-100%

< 30 SNPs in 6 genes could predict XDR TB with 90 - 98% sens

J Clin Microbiol 2014 ;52(3):781-789 doi 10.1128/JCM.02701-13.

• Empiric treatment with local lab epidemiology

Pyrosequencing applications

- Expanding the mutation knowledge base
 - Sequencing directly from clinical samples

Pyrosequencing (PSQ) to detect XDR TB

• Rapid, accurate, robust, high throughput tech

delivers targeted sequencing

• Clinically relevant results in < 6 hrs directly from samples

• Flexible :

adaptable to regional prevalence specifics & new mutations

PSQ : detecting > 64 mutations in < 6 hrs

	Target	Location	Mutations	Length
<i>M tuberculosis</i> complex	IS6110		-	24
	katG	312 – 316	5	13
Isoniazid	inhA promoter	- 4 to -20	7	17
	ahpC- oxyR	- 4 to -23	5	24
Rifampicin	rроВ	507-521 522-533	32	45 35
Fluoroquinolone	gyrA	88-96	13	25
SLI KAN,AMK,CAP	rrs	1397-1406	2	10
KAN	eis	-6 to -47	5	42

Pyrosequencing (PSQ) applications

What do we use PSQ for ?

(i) Smear Positive Samples with LPA any WT band absent but with no corresponding mutant band

(ii) Resolving discordant Xpert & MGIT DST(iii) Smear negative TB

Evaluation of pyrosequencing for extensive drug resistance-defining antituberculosis drugs for use in public healthcare

Remya Nambiar^{a,**}, Daksha Shah^b, Kanchan Ajbani^a, Mubin Kazi^a, Meeta Sadani^a, Anjali Shetty^a, Padmaja Keskar^b, Sanjeev Kamble^b, Alex van Belkum^c, Camilla Rodrigues^{a,*}

Comparison of PSQ, GenotypeMTBDR & MGIT DST

Drug	Molecul ar locus	Number of isolates	Mutation(s) detected by PSQ (n = number of	Point mutations included in Genotype M TBDRplus/4	Incremental value of PSQ	Phenot (total)	typic MGIT I number of is)ST patters olates)
		corresponding to the locus	isolates)	(theoretical assumption)	over Genotype MTBDRplus/sl	Drug	Resistant	Sensitive
INH	karG	71	S315T (n = 69) <u>S315G (n = 1)</u> S315T (n = 1)	karGMUT1 - karGMUT2	1.41%	INH	100	0
	inhA	1	T = 8C (n = 1) C = 15T (n = 4)	inAAMUTSA inAAMUTS	0.00%			
	karG & inhA	19	S315T + C - 15T (n = 18) S315T + -17T (n = 1)	karGMUT1 + hhAMUT1 karGMUT1	0.00%			
	No mutations detected by PSQ Genotypic resistance + Phenotypic suscepti bility	5						
RMP	rpoB	1 2	L511P $(n = 1)$ <u>Q513K</u> $(n = 1)$ Q513K $(n = 1)$	-	13.00%	RMP	99	1
		2	$\frac{\sqrt{513}}{100}$ (n = 1) D516Y + 533GAG (n = 1)	-				
		6	H526Q (n = 1) H526D (n = 3) H526C (n = 1)	- rpeBMUT2B -				
		85	HS26L $(n = 1)$ SS31Q $(n = 1)$ SS31L $(n = 84)$ LS33P $(n = 4)$	rpoBMUT3				
	Genotypic resistance + Phenotypic suscepti bili ty	i	2.3.2.17 (H = 4)	-				
KAN	ei i	1 3 2	<u>10C</u> (n = 1) C12T (n = 3) NI (n = 2)	-	100% (sample size = 4)	KAN	17	83
	No mutations detected by PSQ Genotypic resistance + Phenotypic suscepti bili ty	94 3						
Injectable	78	9	A1401G (n = 9)	rsMUT1	0% (ample	KAN	17	83
drugs	No mutations detected by PSQ Genotypic resistance + Phenotypic cucomotivility	91 KAN = 1 CAP = 1			size = 9)	AMK	10	90 88
FQs	grit.	1 9 1	$\frac{88TGC}{A90V} + \frac{595T}{595T} (n = 1)$ $A90V + \frac{595T}{595T} (n = 9)$ $A90V + 591P + \frac{595T}{595T}$ $(n = 1)$	- grAMUT1 grAMUT1 + grAMUT2	8.20%	MXF	58	42
		4	D94Y (n = 4) D94G (n = 1)	gyrAMUT3B gyrAMUT3C				
		29 3 3	D94G + S95T (n = 29) D94N + S95T (n = 3) D94H + S95T (n = 3) D94H + S95T (n = 3)	gyrAMUT3C gyrAMUT3B gyrAMUT3D		OFX	76	24
		4 4 2 6	$D_{24A} + \underline{SDST} (n = 4)$ $\underline{94GTC} + \underline{SDST} (n = 4)$ $D_{94Y} + \underline{SDST} (n = 2)$ NI (n = 6) SDST (n = 21)	gyrAMUT3A - gyrAMUT3B -				
	No mutations detected by PSQ Genotypic	2 MXF = 9	<u>3931</u> (n = 34)					
	resistance + Phenotypic suscepti bili ty	OFX = 2						

Incremental increase in SNP detection over LPA INH : 1.3% RIF : 13% FQL : 8.2%

Tuberculosis 2018 ;110:86-90

Pyrosequencing (PSQ) applications

What do we use PSQ for ?

(i) Smear Positive Samples with a LPA WT band present but with no corresponding mutant band

(ii) Resolving discordant Xpert & MGIT DST

(iii) Smear negative TB

Pyrosequencing to resolve discrepant Xpert MTB/RIF and Mycobacterial Growth Indicator Tube 960

Kanchan Ajbani, Mubin Kazi, Jeffrey Tornheim¹, Swapna Naik, Rajeev Soman², Anjali Shetty, Camilla Rodrigues

Departments of Microbiology and ²Medicine, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, Maharashtra, India, ¹Johns Hopkins University School of Medicine, Division of Infectious Diseases, Center for Clinical Global Health Education, Baltimore, MD USA

- Operator related
- Protocol related
- Heteroresistance
- Inadequate knowledge about mutations

Lung India 2018;35(2):168-170

Discrepant samples : Algorithm for Xpert MTB / RIF & MGIT DST

Lung India 2018;35(2):168-170

Pyrosequencing (PSQ) applications

What do we use PSQ for ?

(i) Smear Positive Samples with a LPA WT band present but with no corresponding mutant band(ii) Resolving discordant Xpert & MGIT DST

(iii) Smear negative TB

AG 2 year old F treated elsewhere in October for fever, chest infiltrate started HREZ

In December, presented to HNH drowsiness, seizures, ptosis miliary TB & tuberculomas

Case contd.....

Childs's mother On HRZE for TB for 5 months but not improving

Mother's sputum & Child's gastric aspirate sent for culture & PSQ done

Pyrosequencing: XDR TB detected in 6 hrs

Global Consortium for Drug resistant TB Diagnostics (GCDD) funded by NIH, USA : Grant #5U01AI082229

Case contd.....

- The child was on IV dexamethasone & anti epileptics
- Salvage Treatment

clofazimine (1 mg/kg) linezolid (10 mg/kg/day) PAS (150 mg/kg) amox clav (875/125 mg/kg)

Referred to ID for optimizing treatment
cycloserine + ethionamide added

Sputum of mother LPA GenoType MTBDR *plus* & *sl* :

XDR Subsequently confirmed by MGIT DST in both mother & child

Needless delay of 4-6 weeks avoided....

Both child & mother well at 2 year FU

		-	

Contents lists available at ScienceDirect

Tuberculosis

journal homepage: www.elsevier.com

Utility of pyrosequencing for rapid detection of tubercular meningitis (TBM) and associated susceptibility directly from CSF specimens

Kanchan Ajbani^a, Mubin Kazi^a, Swapna Naik^a, Rajeev Soman^b, Anjali Shetty^a, Camilla Rodrigues^{a, *}

Sr. No	Age	Sex	Phenotypic		Genotypi	ic		
			Culture	Culture- DST	Xpert		Pyrosequ	iencing
					MTB	RIF	MTB	Mutations
1	22	Female	МТВ	MDR	POS	RES	POS	531 TTG rpoB, katG 315 ACC
2	17	Male	N.G.	N.A.	POS	RES	POS	531 TTG rpoB, katG 315 ACC, gyrA 94 GGC, rrs 1401G
3	25	Female	N.G.	N.A.	NEG	N.A.	POS	rpoB 516 GTC, katG 315 ACC, inhA -15 T
4	64	Male	N.G.	N.A.	NEG	N.A.	POS	rpoB 531 TTG, katG 315 ACC
5	13	Male	N.G.	N.A.	NEG	N.A.	NEG	N.A.
6	34	Male	N.G.	N.A.	POS	SUS	POS	wild type
7	57	Female	MTB	SUS	NEG	N.A.	POS	wild type
8	28	Female	N.G.	N.A.	NEG	N.A.	POS	katG 315 ACC, rrs 1401G, rpoB NI, gyrA
								NI
9	28	Female	N.G.	N.A.	NEG	N.A.	POS	rpoB 531 TTG, katG 315 ACC, inhA -15T,
								gyrA 94 GGC
10	28	Male	N.G.	N.A.	NEG	N.A.	POS	kat G 315 ACC
11	20	Male	N.G.	N.A.	NEG	N.A.	NEG	N.A.
12	53	Male	N.G.	N.A.	NEG	N.A.	POS	wild type
13	32	Female	N.G.	N.A.	POS	RES	POS	rpoB 521 TTG, kat G 315 ACC

TBM : CSF PSQ

<u>o</u>	•		PHE	NOTYPIC			GE	NOTYPIC	
z	j B∕	ê	Culture	Cullture DCT	>	(pert		Pyrosequencing	
S	4	0,	Culture	Culture-DST	MTB	RIF	МТВ	Mutations	MDR/ XDR
14	65	Male	NG	NA	Neg	NA	Pos	katG 315 ACC	INH monoresistance
								526 AAC rpoB, katG 315	
15	33	Male	Pos	MDR	Pos	Res	Pos	ACC	MDR
								rpoB 531 TTG, katG 315	
16	55	Female	Pos	MDR + FQ	Pos	Res	Pos	ACC, gyrA 94 GGC	MDR + FQ
17	19	Male	Pos	Sus	Pos	Sus	Pos	wild type	Pan S
18	28	Female	Pos	Sus	Pos	Sus	Pos	wild type	Pan S
19	53	Male	Pos	Sus	Pos	Sus	Pos	wild type	Pan S
20	25	Male	NG	NA	Pos	Sus	Pos	wild type	Pan S
21	37	Male	NG	NA	Neg	NA	Pos	NA	NA
22	50	Male	NG	NA	Neg	NA	Pos	wild type	Pan S
23	38	Male	NG	NA	Neg	NA	Pos	wild type	Pan S
24	87	Female	NG	NA	Neg	NA	Neg	NA	NA
25	71	Female	NG	NA	Neg	NA	Neg	NA	NA
26	55	Female	NG	NA	Neg	NA	Neg	NA	NA
27	39	Male	NG	NA	Neg	NA	Neg	NA	NA
28	55	Female	NG	NA	Neg	NA	Neg	NA	NA
29	58	Female	Pos	Sus	Pos	Sus	Pos	wild type	Pan S
30	31	Male	Pos	Sus	Pos	Sus	Pos	wild type	Pan S
								531 TTG rpoB, katG 315	
31	21	Female	Pos	MDR	Pos	Res	Pos	ACC	MDR
32	68	Female	NG	NA	Neg	NA	Pos	wild type	Pan S
33	31	Female	NG	NA	Neg	NA	Pos	wild type	Pan S
								531 TTG rpoB, katG 315	
34	53	Male	NG	NA	Pos	MDR	Pos	ACC	MDR
35	38	Male	NG	NA	Neg	NA	Pos	wild type	Pan S
36	35	Female	NG	NA	Neg	NA	Pos	wild type	Pan S
37	18	Male	NG	NA	Neg	NA	Pos	wild type	Pan S
38	6	Male	NG	NA	Neg	NA	Pos	wild type	Pan S
								531 TTG rpoB, katG 315	
39	32	Female	NG	NA	Neg	NA	Pos	ACC	MDR
40	10	Female	NG	NA	Neg	NA	Neg	NA	NA
								rpoB 531 TTG, katG 315	
41	64	Female	NG	NA	Neg	NA	Pos	ACC, gyrA NI	MDR
42	47	Male	NG	NA	Neg	NA	Neg	NA	NA
43	43	Female	NG	NA	Neg	NA	Pos	wild type	Pan S
44	16	Female	NG	NA	Neg	NA	Neg	NA	NA
45	34	Female	NG	NA	Neg	NA	Neg	NA	NA
46	27	Female	NG	NA	Neg	NA	Neg	NA	NA
47	64	Female	NG	NA	Neg	NA	Neg	NA	NA

Of 47 TBM suspects, 34 PSQ +ve with with 10 MGIT positive & 14 Xpert positive

Dilemmas in management of TBM / tuberculomas

- Drug resistance
- Paradoxical response
- Adequate drug penetration
- Vasculitis / infarcts
- Hyponatremia
- Brain edema
- Hydrocephalus
- Seizures
- Mixed infections (HIV)

AK 16 years TBM Started on HRZE & steroids partial improvement

After tapering of steroids, c/o severe headache Intercisternal tuberculomas with exudates Referred to ID

? Drug Resistant TB or paradoxical response

Xpert : MTB not detected

PSQ:Mono R to INH katG 315ACC

• INH replaced with ETH

- (better CSF penetration & EBA)
- Re started steroids

Patient improved on FU

Assav Int	ormation				
Assay				Assay Voraion	Access Trees
Xpert MTB-	RIF Assay G	4		5	In Vitro Diagnostic
Test Res	ult:	MTB NOT	DENEGNED		
Analyte R	esult				
nalyte Name	Ct	EndPt	Analyte Result	Probe Check	
Probe D	0.0	-3	NEG	PASS	
Probe C	0.0	8	NEG	PASS	
Probe E	0.0	-2	NEG	PASS	
Probe B	0.0	0	NEG	PASS	
SPC	25.6	291	PASS	PASS	
and the second	0.0	1	NEG	PASS	
Probe A	0.0	0	NEG	PASS	
Probe A QC-1	0.0	0	INE G		

PYROSEQUENCING FOR XDR

Sample- CSF

Drug	Target	Mutation	Interpretation
	MTBC (IS6110)	POSITIVE	Mycobacterium tuberculosis detected
Isoniazid	katG	315 ACC	Resistant
	inhA promoter	No mutation	
Rifampin	rpoB	No mutation	Susceptible
Kanamycin	eis	No Mutation	Susceptible
Amikacin, Kanamycin, Capreomycin	rrs	No Mutation	Susceptible
Fluoroquinolones i.e. Ofloxacin, Moxifloxacin	gyrA	No Mutation	Susceptible

PSQ is a rapid screening technique for molecular detection of drug resistance. For the confirmation of the PSQ results, culture-based drug susceptibility testing should be performed. A negative result (e.g. no mutation) does not rule out contributory mutations present elsewhere in the genome. The test results should not be used as the sole criterion but can be used in conjunction with other clinical data for the diagnosis of drug resistant tuberculosis.

Sequencing in the DR TB world

Sanger Sequencing
Pyrosequencing (PSQ)
NGS (Targeted & WGS)

Current TAT with DST methods

MGIT, Genotype MTB DR plus & MTB DR sl, PSQ, NGS (Targeted & WGS)

Culture MGIT DST	Genotype MTB DR <i>plus</i> MTB DR <i>sl</i>	Pyrosequencing	Targeted NGS	WGS from culture
4 -8 weeks	2 days	< 6 hrs	37 hrs	9 -12 days
Isolation 4-6 weeks + DST 2 weeks			Enrichment 4 hrs Prep 5 hrs Sequencing MiSeq 28 hrs Batch 48 samples	Enrichment 7-10 days Prep 5 hrs Sequencing MiSeq 28 hrs Batch 9 samples

HNH 2017 : DR conferring mutations detected by MTBDRplus & MTBDRsl

Resistant Phenotype	Reference Genes	DR conferring mutations	No(%) Detected	ONLY WT absent	% Only WT absent
INH ^R	kat G	S315T1/ S315T2	1728 (87%)	katG 315	49(2.23%)
	inhA	C15T A16G T 8C	202 (9.2%) 27 (1.23%)	inhA -15 -16 -8	-
RIF ^R	rpob	D516V H526Y H526D S531L	32 (1.4%) 6 (0.2%) 4 (0.18%) 1717 (93%)	WT 1 : 505-509 WT 2 : 510-513 WT 2/3 : 510-517 WT 3/4 : 513-519 Wt 4/5 : 516-522 WT 5/6 : 518-525 WT 7 : 526-529 WT 8 : 530-533	- 12(0.5%) 8 (0.3%) 13 (0.5%) 6 (0.27%) - 52 (2.3%) 21 (0.95%)
OFX ^R	gyrA gyrB	A90V S91P D94A D94N/Y D94G D94H	318(26%)14(1.1%)30(2.4%)21(1.73%)423(64%)12(1%)	gyrA WT1: 85-90 WT2:89-93 WT3: 92-97	- - 48 (3.96%)
	gyre	N538D/ E540G	2 (0.1%)	gyrB WT1: 538-540	· · (0.070)
KAN ^R	eis	C14T	4 (0.33%)	eis WT1: G37T, WT2: 10 14 · WT3 · 2	5 (0.4%) 44 (3.63%)
KAN ^R /AMK ^R / CAP ^R	rrs	A1401G G1484T	106 (94%)	rrs WT 1: 1401-1402 WT2 1484	9 (0.8%)

WGS for DR conferring mutations : Incremental value over current LPA / PSQ ?

XDR drugs Oral FLD Oral SLD Re purposed drugs : CFZ, LZD New Drugs : BDG, DLD

- : <10% (LPA WT absent with no mutant)
- : Ethambutol, PZA
- : Ethionamide, PAS, cycloserine

Outline

- Empiric treatment with local lab epidemiology
- Pyrosequencing applications

Expanding the DR mutation knowledge base

WGS for identification of more genomic variants & detection of associations of genetic variants with quantitative DST

Sequencing directly from clinical samples

CRyPTIC : Microtitre phenotypic MICs vs Whole Genome Sequencing

A standardised method for interpreting the association between mutations and phenotypic drug resistance in *Mycobacterium tuberculosis*

Relational Sequencing TB Data Platform

Drug (phenotypic testing)	Gene	High-confidence mutations	Moderate-confidence mutations	Minimal-confidence mutations	No association with resistance
First-line					
Rifampicin (R)	гроВ	F505V+D516Y, S512T, Q513H+L533P, Q513-F514ins, Q513K, Q513L, Q513P , F514dupl, M515I+D516Y, D516A , D516F, D516G , D516G+L533P, D516ins, D516N, D516V , Del N518, S522Q , H526C , H526D , H526F, H526G , H526L ,	D516Y, S522L, H526P, L533P	L511P, H526N, I572F	
Isoniazid (H)	inhA-mabA	H526R, H526Y S531F, S531L, S531Q, S531W, S531Y, D626E g-102a ^{#.1}	c-15t		g-102a^{#.¶} , t-80g, <i>g</i> -47c,
	katG furA	S315I, S315N, S315T, pooled frameshifts and premature stop codons			A110V, R463L, L499M L68F
	mshA		A187V ^{#.1}		N1115
Second-line (group A) Moxifloxacin (MFX)	gyrA	G88C, A90V, S91P, D94A, D94G, D94N, D94Y			E21Q, S95T, G247S, G668D, V7121
Ofloxacin (OFX)/ levofloxacin (LFX)	gyrA	G88A, G88C, S91P, A90V, D94A, D94G, D94H, D94N, D94Y	D89N		E21Q, T80A, S95T, G247S, G668D, V712L
	gyrB	E459K, A504V			
Second-line (group B)		- 1/01 1/0/			
Amikacin (AM)	ns	a1401g, g1484t		0.271 0.121	-12284
Kanamycin (RMI)	es	s51/c [#] s1/01a c1/02t c1/9/t		g-3/1, C-121	a13300
	rrs+eis	rrs c517t [#] + eis a-37t			
Capreomycin (CM)	ITS	a1401g. c1402t. g1484t			c517t
	tlyA	N236K, pooled frameshifts and premature stop codons			D149H
Streptomycin (S)	rpsL	K43R, K43T, K88Q, K88R, T40			
	ITS	a1401g", a514c, a514t, c462t, c513t, c517t			
gidB	gi dB		E92D ^{4.1}		L16R, V110G, pooled frameshifts and premature stop codons
Second-line (group C)					1 - C
Ethionamide and	inhA	c-15t+1194T, c-15t+S49A	c-15t		
prothionamide (ETO/PTO)	ethA				Q347Stop
Second-line (group D) Pyrazinamide [Z]	pncA	 t-12c, a-11g, t-7c, A3E, L4S, I6T, V7G, D8E, D8G, D8N, 010P, D12A, D12N, C14R, G17D, L19P, G24D, Y34D, A46V, K48T, D49G, D49N, H51Q, H51R, P54S, H57D¹, H57P, H57R, H57Y, S59P, P62L, P62Q, D63G, S66P, S67P, W68C, W68R, H71D, H71Q, H71Y, C72R, T76P, H82R, L85P, L85R, F94L, F94S, K96N, K96R, G97C, G97D, G97S, Y103H, S104R, G108R, L116P, L116R, L120P, R123P, V125F, V125G, V128G, G132A, G132D, G132S, A134V, T135P, H137P, C138Y, V139G, V139L, 0141P, T142A, T142K, T142M, indel - R148ins 	 V7G, Q10R, P54L, W68G, K96E, K96T, A171E, M175I 	D126, F58L, H71R, 1133T, V139A	indel - c-125del, I31T, L35R, T47A, I6L, K48T, T114M
		(inframe), L151S, V1556, L159P, T160P, G162D, T168P, L172P, M175T, M175V,		Eur Doonir 1 20	17.50.1701251
		V180F, V180G, Pooled frameshifts and premature stop codons		Eur Respir J ZU	17,30.1701334

EDITORIAL

The Coming of Age of Drug-Susceptibility Testing for Tuberculosis

Helen Cox, Ph.D., and Valerie Mizrahi, Ph.D.

 Database validation for all drugs with High, moderate & minimal confidence resistance conferring mutations

 Development of standardized analytical pipelines to differentiate DR mutations from phylogenetic markers & synonymous mutations

Outline

- Empiric treatment with local lab epidemiology
- Pyrosequencing applications
- Expanding the mutation knowledge base

Sequencing directly from clinical samples

Sequencing directly from sputum

Sputum contains a mix of DNA

- Mostly human
- > Bacteria / NTM

≻ Viruses

Oxford Nanopore MinION Sequencing

http://www.technologyreview.com/sites/default/files/legacy/nanopore_x616[1].jpg

Sputum : How do you enrich the TB DNA signal ?

1. Sequence all DNA present at high depth (MTB coverage 0.002 – 0.7x)

2. Enrich with Baits (83% samples achieved >20x depth)

3. Lysis to remove target DNA (65% > 3X depth)

4. Early MGIT culture (1-5 days)

Doughty, et al. Peer J 2014 Brown, et al. J Clin Micro 2015 Doyle RM J Clin Micro 2018 Votintseva, et al. J Clin Micro 2017

How TB continues to conquer the world

Evolved into 7 lineages

When does bacterial resistance become global?

• When the strain is easily transmissible (high density settings)

• When resistance imposes little fitness burden

Global implementation of NGS are we ready for prime time ?

- Direct WGS still not standard
- Not near enough to the patient
- Current pipelines focus XDR defining drugs
- For oral SLD / repurposed drugs not all mutations are known
- Expertise for analysis with complex workflows
 - Cost

• ...we certainly need to get on with WGS for surveillance

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

OCTOBER 11, 2018

VOL. 379 NO. 15

Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing

The CRyPTIC Consortium and the 100,000 Genomes Project

M Pai et al. BMJ Global Health doi:10.1136/bmjgh-2018-000755

History will judge us not by our scientific breakthroughs, but how we apply them...