

ROLE OF CD8 IN PROGRESSION FROM LATENT TO ACTIVE TB

Disclosures

- David Lewinsohn:
 - OHSU inventor, CD8+ T cell vaccines and diagnostics
 - Viti Inc., CEO, current
- Spouse Deborah Lewinsohn:
 - OHSU inventor, CD8+ T cell vaccines and diagnostics
 - ViTi Inc., President, current
- OHSU and Drs. Deborah and David Lewinsohn have a financial interest in ViTi, a company that may have a commercial interest in the results of this research. This potential individual and institutional conflict of interest has been reviewed and managed by OHSU.

Using the Host Response to Discern Bacterial Burden

The Big Questions:

- Following exposure to Mtb who is at risk for disease?
- During the course of TB Treatment, can we predict who is likely to relapse?
- Can measuring the host response help us where bacterial burden is low?

Bacterial Burden

Spectrum of Infection with Mtb

Adapted from Young DB et al., Trends Microbiol 2009

Model of Memory: Possible Outcomes

Unique functions of CD8+ T cells

- Recognition of MHC Class II negative cells
- Preferentially recognize heavily infected cells
- Discern bacterial burden

Unique functions of CD8+ T cells

- Recognition of MHC Class II negative cells
- Preferentially recognize heavily infected cells
- Discern bacterial burden

Lewinsohn DA et al., AJRCCM, 2003

Unique functions of CD8+ T cells

- Recognition of MHC Class II negative cells
- Preferentially recognize heavily infected cells
- Discern bacterial burden

Adapted from Young DB et al., Trends Microbiol 2009

CD8+ T cells: A reflection of antigenic load?

- CD8+ T cells assessed in adults with LTBI or TB disease by ICS/FACS (Lausanne, Switzerland)
- CD8+ T cells found more frequently in PTB [67%] than ETB [37%] than LTBI [15%]
- CD8+ T cells at higher frequency in Smear-positive TB than Smear-negative TB

CD8+ T cells as surrogate for bacterial burden in adults

- NAA2/08-0023 CDC / TBRU
 Collaboration: Kathleen Eisenach & John Johnson
- Longitudinal study in smear positive, HIV negative adults in Kampala, Uganda, initiating treatment
- Blood drawn for ELISPOT analysis
 - Baseline
 - Week 8
 - Week 24

CD8+ T cells as surrogate for bacterial burden in adults

CD4 Response

CD8 Response

CD8+ T cells as surrogate for bacterial burden in children

- HIV negative Ugandan children <10 yrs hospitalized with pulmonary TB versus healthy household contacts.
- ESAT-6/CFP-10-specific T cells measured by IFN-γ ELISPOT.
- CD8+ T cells (PBMC depleted of CD4+ T cells) and whole PBMC measured.

CD8+ T cells as surrogate for bacterial burden in children

Large Scale Identification of CD8 Antigens 2005-2009 NIH HHSN272200900053C 2009-2014 HHSN266200400081C

- Define Immunodominant HLA-la- and HLA-lb- restricted Mtb Antigens
 - Lewinsohn Lab(s)
 - Karen Dobos, CSU
 - Dave Sherman, Seattle Biomed
 - William Hildebrand, UOHSC
 - Avigdor Shafferman, IIBR
- Define Clinical Utility
 - Henry Boom, TBRU, CWRU
 - Harriett Myanja & Sarah Kiguli, Makerere University, Kampala, Uganda
- Define Vaccine Utility
 - Helen McShane & Elena Sytlianou, Oxford University

Mtb Genome 4011 genes 331,000 peptides 4,411,529 bp Known Composite "Esat-6 Antigens Evidenced-based Like" Score "Secreted" TubercuList Functional Score **Genomic Peptide Library** 389 Genes

38,989 peptides

Mtb HN878 genome (Beijing strain) 3922 ORFs

~42,000,000 potential 9, 10, 11-mer binders to 12 HLA supertypes

- Median binding affinity of predicted binders in the cluster
- Density of predicted binders in the cluster

CTL PEPTIDE LIBRARY

39,000 15-mer peptides 68,713 putative CTL binders

80% representation of the genome ORFs
> 95% high affinity epitopes

T Cell Based Identification of CD8 Antigens

Definition of CD8 Antigens Using Pooled Peptides

Subjects

1/2 Pheresis / screen 15 LTBI 5 Active

CD8 T Cells

3x109 PBMC

4.5 x108 CD8

Dendritic Cells

3.6 x10⁷ DC

ELISPOT Assay

250,000 CD8 T cells / well 20,000 DC / well Duplicate wells

Peptide Library
50 peptides / well
5 mcg / peptide
Solid phase synthesis
(Jerini)

Controls

Media (7 wells)

PHA HIV Gag

Ex-Vivo Determination of Frequency

- Commonly recognized
- Strongly recognized

3x108 PBMC

Ex vivo T Cell Screens of Mtb-infected Donors (target n=20)

SE Asian (PPD+) Caucasian (PPD+) **D527** D525 **D545** D557 D564 D454 D608 D467 D610 D603 D694 ACTIVE TB African American (PPD+) D560 D584 D635 D627 D690 D632 D691 D634 D695

D690

Summary of all ex vivo donor screens (Top 5%)

Clinical screening & validation Kampala, Uganda

- TBRU Kawempe Community Health Study
 - Identification of commonly recognized antigens
 - 10 Active / 10 LTB I
 - Identification of disease specificity
 - 50 Active / 50 LTBI

Validation Summary Immunodominant Peptide Pools

Top 5% for Any Donor At Least Three donors

^{*} Under evaluation per Elena Stylianou and Helen McShane

CD8 antigen combinations

- CD8+ T cell responses in adults with TB disease (Kampala, Uganda)
- HIV positive (n=20)
 & HIV negative (n=20)

% of Donors positive by antigen (CD8+ T cells, IFN-gamma)

Role of CD8+ T cells in the diagnosis of TB

- Recognition of MHC Class II negative cells
- Preferentially recognize heavily infected cells
- Discern bacterial burden
 - Specific to Mtb-infected individuals.
 - Positive correlation with degree of TB disease
 - Decrease with effective TB treatment
 - Additional sensitivity for TB disease with multiple TB antigens.

Adapted from Young DB et al., Trends Microbiol 2009

Acknowledgements

<u>OHSU</u>

Christina Lancioni

Melissa Nyendak

Megan Null

Meghan Cansler

Amanda Duncan

Laura Byrd

Tomi Mori

Byung Park

Deborah Lewinsohn

OHSU/PVAMC

Gwendolyn Swarbrick

David Lewinsohn

TBRU, CWRU/Uganda

Sarah Kiguli

Sarah Zalwango

Mary Nsereko

Harriet Mayanja

Stephen Balyejusa

Joy Baseke

Deo Mulindwa

Christine Scott

Denise Johnson

Philippa Mudido-Musoke

W. Henry Boom

UCSF

Payam Nahid

NIH funding:

HHSN272200900053C

HHSN266200400081C

HHSN266200700022C

R01 AI05447501-08S1

R01-AI48090-06A1