TPP for test that predicts progression to active TB

Samuel G. Schumacher, PhD MSc
Scientific Officer at FIND

1st July 2016
Outline
Focus on areas with most disagreement in survey

1. Intended use / goal / target condition
2. Performance targets
3. Cost
TPP

- **Time horizon**
 - 5 years

- **Targets**
 - Optimal: aspirational, ambitious
 - Minimal: feasible but important improvement
1. Intended use / goal / target condition
Goal / target condition

Rationale for 2-year time horizon

- Performance targets for predictive test only meaningful in reference to a specified time horizon
- 2 years reasonable pragmatic choice because
 - ~60% of progression occurs in first 2 years (~45% in year 1)
 - Most promising approach to predicting progression may be via detection of incipient TB (which by definition will be relatively close to onset of active disease)
 - Late progression may occur due to precipitating factors, which cannot be predicted in advance
 - Feasibility for conducting studies and getting timely results

Ruling-out active TB

- Remove as requirement from 'optimal'?
2. Performance targets
Key reason for limited uptake & adherence of IPT: risk/benefit-profile for preventive Rx not convincing for many (from perspective of patients, clinicians and PH) because

- imperfect treatment (efficacy, duration, AEs etc.)
- TST/IGRA accuracy for risk of progression very low (→ low PPV and high NNTT)

Premise: risk/benefit-profile is key, PPV and NNTT useful metrics for the determination of performance targets

- PPV captures patient perspective (If test+, how likely am I to have disease?)
- NNTT captures clinician/PH perspective (If treating all test+, how many do I need to test and treat to prevent one case?)
- BUT: use sensitivity/specificity (or LR+/-) as performance metrics, since these are independent of incidence (picked based on desired PPV and NNTT)
Expectations for performance targets for prediction (vs diagnosis)

- Accuracy of prediction (prognosis) inherently lower than that of diagnosis
 - Statement about future vs present
 - Impossible to predict precipitating factors at time of testing

![Diagram showing the progression from infection to disease, including possible predisposing and precipitating factors.]

- Possible predisposing factors:
 - HIV
 - malnutrition
 - diabetes
 - alcoholism
 - pro/anti inflammatory imbalance

- Possible precipitating factors:
 - HIV
 - anti-TNF therapy
 - malnutrition
 - Vit D deficiency
 - viral infection

Esmail 2014
2-step approach to determining performance targets

Step 1. Clarify what values of PPV and NNTT are currently found acceptable to patients/clinicians/policy makers
- Look at groups for whom IPT is currently recommended by WHO
- Estimate PPV/NNTT in those groups

Step 2. Assess what combinations of sensitivity/specificity are compatible with acceptable values of PPV and NNTT
- PPV/NNTT ~ Se(RoP) + Sp(RoP) + RoP + Eff(Rx)
- Look at contours of PPV/NNTT across combinations of Se/Sp
- Investigate differences between key subgroups
2-step approach to determining performance targets

Step 1. Clarify what values of PPV and NNTT are currently found acceptable to patients/clinicians/policy makers

- Look at groups for whom IPT is currently recommended by WHO
- Look at estimates of Sens/Spec/LR+ and PPV/NNTT in those groups

<table>
<thead>
<tr>
<th>COUNTRY GROUP</th>
<th>AT RISK POPULATIONS</th>
<th>TESTING ALGORITHM</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-income and upper middle-income countries with an estimated TB incidence rate of less than 100 per 100,000 population</td>
<td>Strongly recommended for the following risk groups: 1) People living with HIV; 2) Adults and children who are household or close contacts of pulmonary TB cases; 3) Clinical indications – patients with silicosis; patients initiating anti-TNF treatment; patients on dialysis; transplant patients.</td>
<td>Exclude active TB using TB investigations. A positive IGRA or TST test result is required to diagnose LTBI.</td>
</tr>
<tr>
<td>Resource-limited and other middle-income countries with an estimated TB incidence rate of more than 100 per 100,000 population</td>
<td>1) People living with HIV; 2) Children under 5 years of age who are household contacts of a TB case.</td>
<td>Exclude active TB using TB investigations. An LTBI test is not required prior to LTBI treatment, but is encouraged for people living with HIV. IGRA should not replace TST.</td>
</tr>
</tbody>
</table>
Predictive accuracy of TST/IGRA

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV*</th>
<th>NNTT*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rangaka / Kik</td>
<td>TST</td>
<td>72% / 58%</td>
<td>41% / 64%</td>
<td>2.4% / 3.2%</td>
</tr>
<tr>
<td></td>
<td>IGRA</td>
<td>72% / 80%</td>
<td>50% / 56%</td>
<td>2.9% / 3.6%</td>
</tr>
</tbody>
</table>

- **Minimal target**
 - Increase PPV by factor of ~2 and (thus cutting NNTT by ~1/2) compared to IGRA

- **Optimal target**
 - Increase PPV by factor of ~5 and (thus cutting NNTT by ~1/5) compared to IGRA

*Based on 2% incidence
2-step approach to determining performance targets

Step 2. Assess what combinations of sensitivity/specificity are compatible with acceptable values of PPV and NNTT

- PPV/NNTT ~ Se(RoP) + Sp(RoP) + RoP + Eff(Rx)
- Look at contours of PPV/NNTT across combinations of Se/Sp
- Investigate differences between key subgroups
‘Positive Predictive Value’ according to Sens/Spec for risk of progression

Note that a test with Se/Sp 99/99 would yield PPV=67%
‘Number Needed to Test & Treat’ according to Sens/Spec for risk of progression
Conclusion

- Need to spell out rationale behind targets in sufficient detail (perhaps including figures)

- Reaching a very high PPV is impossible

- Specifying performance targets as LRs (representing contours) may be preferable to Sens/Spec

- Proposed minimum target represents an important improvement and seems achievable within 5-year time horizon of TPP
List of topics for discussion

1. Intended use / goal / target condition
 - 2-year time horizon
 - Ruling-out active TB

2. Performance targets

3. Cost

4. Target population

5. Test type (read-out)