Ensuring Adequate Laboratory Biosafety

Thomas M. Shinnick, Ph.D.
Associate Director for Global Laboratory Activities
Division of Tuberculosis Elimination
GLI Strategic Priorities

• Establish GLI partnership projects
• Develop templates for country-specific roadmaps for laboratory strengthening
• Develop human resource strategies
• Develop appropriate laboratory biosafety standards
• Develop a TB lab accreditation system
• Move new diagnostics into countries
Why is Biosafety Needed in the Tuberculosis Laboratory?

- Risk of infection with *Mtb* is higher for TB lab workers than for other lab workers
 - 1.4-fold higher for TB microscopists
 - 21.5-fold higher for DST technicians
- Infection often results from unrecognized production of infectious aerosols
- Infection can also occur from needle sticks, through broken skin, etc.
Biosafety

The application of a combination of administrative controls, containment principles, laboratory practices and procedures, safety equipment, and laboratory facilities to enable laboratorians to work safely with potentially infectious microorganisms.
Administrative Controls

• Supervision by an experienced scientist
• All personnel are well trained, proficient, aware of hazards, follow rules
• Routine medical surveillance
• Biosafety and operations manuals
• Emergency plans for spills, accidents, etc.
• Appropriate facilities and safety equipment
Good Laboratory Practices

- Restrict or limit access when working
- Biohazard warning signs
- Prohibit eating, drinking and smoking
- Prohibit mouth pipetting
- Minimize splashes and aerosols
- Decontaminate work surfaces daily
- Decontaminate wastes
Containment

- **Primary Containment**: protect worker and immediate laboratory environment
 - good microbiologic techniques
 - safety equipment
 - facility design

- **Secondary Containment**: protect the environment outside the laboratory
 - facility design
 - waste management
Biosafety Level (BSL)

• Conditions under which an infectious agent can ordinarily be safely handled.
• Conditions are a combination of:
 • laboratory practices and techniques
 • safety equipment
 • laboratory facilities
• Usually agent and procedure specific
 • generic BSLs are available for many infectious agents
 • procedure-specific BSLs often missing
GLI Biosafety Projects

• Biosafety guidance for TB lab procedures
 • Technical consultation in Sept. 2008
 • Expert meeting in April 2009
 • WHO and CDC were the lead agencies

• Specifications for a ventilated work station suitable for direct AFB-smear microscopy
 • Expert consultation in Sept. 2009
 • CDC and APHL were the lead agencies
Biosafety Guidance

• Consensus recommendations for minimum biosafety requirements for
 • AFB-smear microscopy
 • Culture
 • Drug-susceptibility testing
 • Molecular testing

• Based on a risk assessment for each TB diagnostic procedure
 • generation of infectious aerosols
 • concentration of bacilli
Direct AFB-Smear Microscopy

Limited risk of generating infectious aerosols

• Work can be done on an open bench
 • separate bench for smear-preparation

• Facility: adequately ventilated enhanced BSL1 or basic BSL2 laboratory
 • natural or mechanical ventilation; 6–12 ACH
 • directional airflow

• Proper disposal of infectious material
Processing Sputum Specimens for Smear, Culture, Molecular Tests

Risk of generating infectious aerosols during centrifugation and specimen manipulation

- Work with specimens should be done in a biosafety cabinet (BSC)
 - BSC class I or II may be used
- Facility: adequately ventilated BSL2 lab
 - directional airflow; 6–12 ACH
- Use aerosol-containing rotors or buckets
- Proper disposal of infectious material
Processing Cultures for Smear, ID, Subculture, DST, Molecular Tests

High risk of generating infectious aerosols during manipulation of liquid suspensions

• Work with cultures should be done in a BSC
 • class I or II BSC may be used
 • certified at least annually

• Facility: adequately ventilated BSL3 or enhanced BSL2 laboratory
 • directional airflow; not recirculated

• Use aerosol-containing rotors or buckets

• Proper disposal of infectious material
BSL3 – Secondary Containment

BSL2 secondary containment plus:
• Controlled access to a separate area
• Double door entry
• Single-pass air; 6-12 air changes/hour
• Enclosures for aerosol generating equipment
• Room penetrations sealed
• Walls, floors and ceilings are water resistant for easy cleaning
If a facility does not have all required BSL3 features (e.g. sealed penetrations, solid ceiling), an acceptable level of safety for conducting routine procedures, including culture, may be achieved in a BSL2 facility providing:

- Directional inward airflow is maintained and exhaust air is discharged to the outside
- Access to the laboratory is restricted when work is being performed
- The recommendations for BSL3 practices, procedures, and safety equipment are rigorously followed
Next Steps for Work Group

- Finalize guidelines
- Distribute guidelines
GLI Biosafety Projects

- Biosafety guidance for TB lab procedures
 - Technical consultation in Sept. 2008
 - Expert meeting in April 2009
 - WHO and CDC were the lead agencies

- Specifications for a ventilated work station suitable for direct AFB-smear microscopy
 - CDC and APHL were the lead agencies
Why is a Ventilated Work Station Needed for Direct Microscopy?

- Risk of *Mtb* infection with is 1.4-fold higher for TB microscopists than non-TB workers
- Potential need for increasing BSL
 - Increased vulnerability of HIV-infected staff
 - Decreased treatment efficacy (M/XDR TB)
 - Increased exposure (unreliable airflow)
- Class I and II BSCs are expensive and require annual maintenance
What is Done in The Work Station

- Open sputum cup
- Smear (disposal sticks/loops, re-usable loops w/ flame/micro-incinerator)
- Air dry
- Close sputum cup
- Disposal of sticks
- heat fix?
- Stain?
A Simple, Inexpensive Biological Safety Cabinet For Use in Developing Nations

by

R. W. Smithwick and G. P. Kubica

Figure 3. A simple airflow gauge: A. Close-up drawing of construction.
B. Placement in BSC for airflow check (see text for details).
Objectives of Expert Consultation

- To assess the need for ventilated work stations in resource-limited settings
- To provide guidelines for design, materials, and construction of work stations
- To provide guidance on validating the recommendations to ensure the safety, reliability, and integrity of the work stations
Issues Addressed

• General requirements to reduce risk of infection with AFB smear microscopy
• Balance need for safety with unintended messages about AFB smear microscopy
• Appropriate vs. non-appropriate use
 • not intended for TB culture, TB DST
• A guideline is not a standard and certification will not be available
Recommendations made for Minimum Requirements

- Materials
- Ergonomics
- Electric Components
- Design
- Validation
- SOP Checklist
Next Steps for Work Group

• Prepare report of expert consultation
• Prepare guidelines in simple language suitable for an international audience detailing instructions how to construct a work station
• Prepare specifications for materials, ergonomics, electric components, design, validation, and SOPs
Acknowledgements

Biosafety Recommendations

- Véronique Vincent
- CN Paramasivam
- Chris Gilpin
- Daniela Cirillo
- Jean Joly
- Jenny Allen
- John Ridderhof
- Jon Crane
- Knut Feldmann
- Moses Joloba
- Paul Jensen

- Peter van't Erve
- Philippe Dubois
- Sang Jae Kim
- Shanna Nesby
- Thomas Shinnick
- Andrew Ramsay
- Karin Weyer
- May Chu
- Nicoletta Previsani
- Sebastien Cognat
Acknowledgements

Ventilated Work Station

• Pawan Angra
• John Ridderhof
• Ralph Timperi
• Adam Prescott
• Chris Gilpin
• Gerrit Coetzee
• Kawi Mailutha
• Kieth Landy
• Kenneth Ugwu
• Khye Seng Goh
• Knute Feldmann

• Paul Jensen
• Linda Parsons
• Lucy Maryogo-Robinson
• Ron Smithwick
• Rudolf Stoltz
• Sean Toney
• E. Scott Kreitlein
• Shanna Nesby
• Steve Williams