ACTG A5221 STRIDE: An international randomized trial of immediate vs early antiretroviral therapy

(ART) in HIV+ patients treated for tuberculosis

D Havlir, P Ive, M Kendall, A Luetkemeyer, S Swindells, J Kumwenda, J Rooney, S Qasba, E Hogg, J Andersen, I Sanne

ACTG SITE INVESTIGATORS

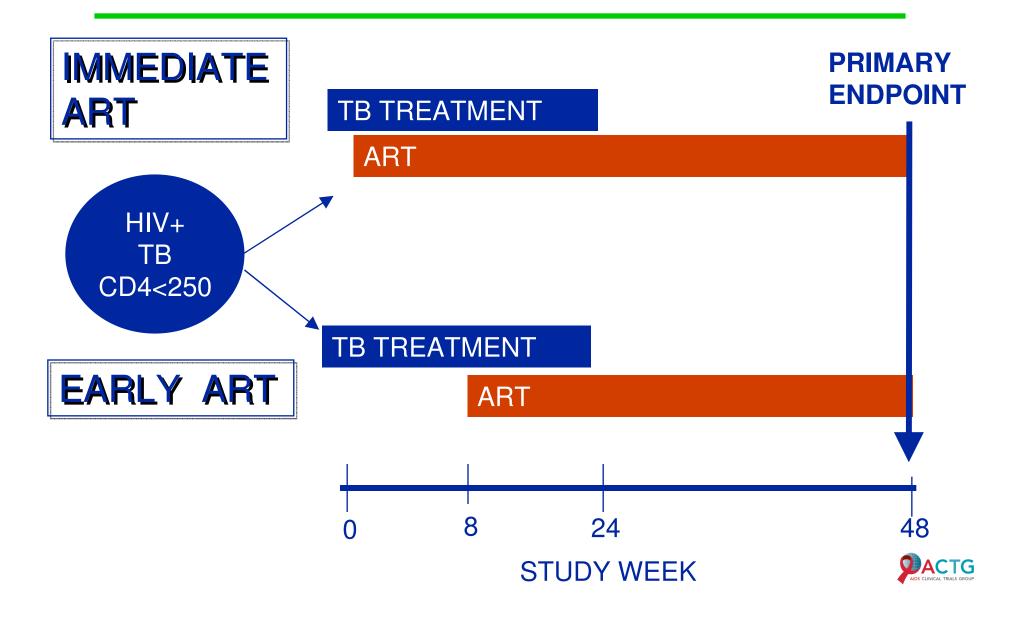
Mina Hosseinipour Umesh Lalloo Valdilea Veloso Fatuma Some N. Kumarasamy Nesri Padayatchi Breno Santos Stewart Reid James Hakim Lerato Mohapi Peter Mugyenyi Constance Benson Jorge Sanchez Javier Lama Jean William Pape Fred Sattler Aida Asmelash Evans Moko Frederick Sawe Mauro Schechter Thira Sirisanthana Srikanth Tripathy Judith Aberg

BACKGROUND

- HIV-associated TB is a major cause of morbidity and mortality globally
- ART started prior to completion of TB therapy reduces mortality¹
- However, the optimal time to start ART during TB treatment has not been established
- Clinicians often must decide when to start ART prior to the confirmation of TB

HYPOTHESIS

In patients starting treatment for TB, the <u>immediate</u> initiation of ART (within 2 weeks) could reduce mortality and morbidity compared to the <u>early</u> initiation of ART (8-12 weeks)



STUDY DESIGN

- Phase IV, randomized, open-label <u>strategy</u> study
- HIV+ adults with confirmed or presumed TB
- CD4 <250
- Two arms: immediate ART (<2 weeks) vs. early ART (8-12 weeks)
- ART regimen: EFV + TDF/FTC
- TB treatment regimen: rifampin based, country approved

STUDY SCHEMA

STUDY ENDPOINTS

Primary: all-cause mortality and new AIDSdefining illnesses by 48 weeks

- Proportions estimated using the Kaplan-Meier method
- Stratified analysis by weighting by the inverse of the Greenwood's variance in each CD4 stratum

Secondary:

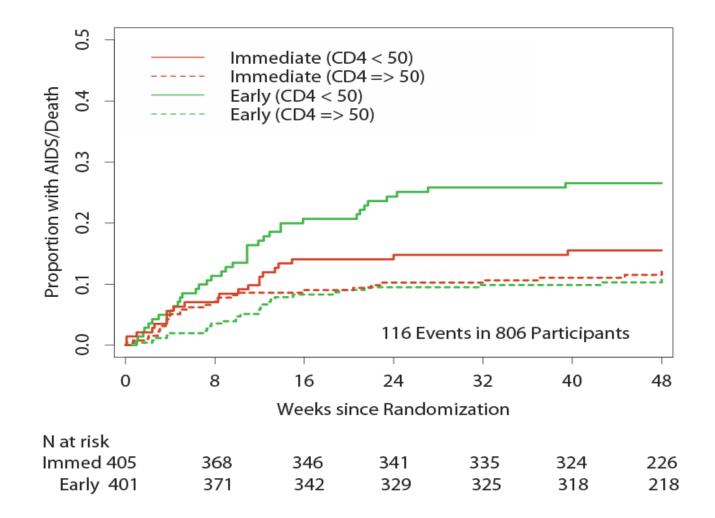
- Safety
- CD4, HIV RNA changes
- TB IRIS¹
- TB outcomes

RESULTS: Baseline characteristics

	Treatment arm				
	Immediate	Early	AII		
	N=405	N=401	N=806		
Study Site					
Africa	275	279	554		
Asia	29	23	52		
N. America	21	18	39		
S. America	80	81	161		
Confirmed TB	48%	45%	46%		
Median CD4 cells/mm ³	70	82	77		
(IQR)	(34,146)	(40,144)	(36, 145)		
Median log ₁₀ HIV RNA	5.39	5.50	5.43		
EVF/TDF/FTC	98%	96%	97%		
Median time to ART	10 days	70 days	n.a.		

RESULTS: Proportion with AIDS/Death

	Immediate	Early	P (95% CI for difference)
All Subjects	12.9%	16.1%	0.45 (-1.8, 8.1)
CD4 <50 cells/mm³	15.5%	26.6%	0.02 (1.5, 20.5)
CD4 ≥50 cells/mm³	11.5%	10.3%	0.67 (-6.7, 4.3)



RESULTS: Proportion with AIDS/Death

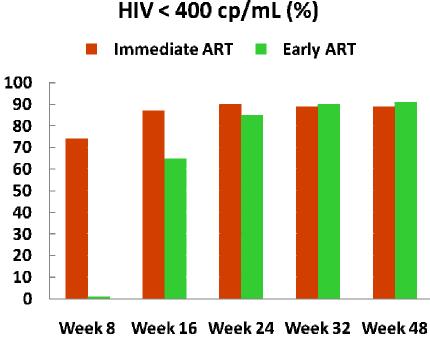
	Immediate	Early	P (95% CI for difference)
All Subjects	12.9%	16.1%	0.45 (-1.8, 8.1)
CD4 <50 cells/mm ³	15.5%	26.6%	0.02 (1.5, 20.5)
CD4 ≥50 cells/mm³	11.5%	10.3%	0.67 (-6.7, 4.3)

Time-to-New AIDS-Defining Illness or Death by CD4 Stratum

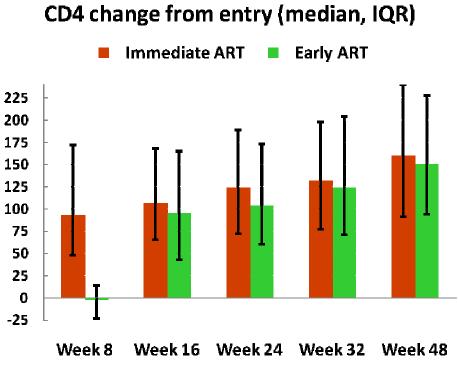
Primary Endpoint: AIDS

AIDS IIIness	Immediate ART	Early ART	<u>Total</u>
	(N=26)	(N=37)	(N=63)
Cryptococcal Disease	6	7	13
Esophogeal Candidiasis	4	8	12
Kaposi's Sarcoma	3	8	11
Pneumocystis pneumonia	3	3	6
Toxoplasmosis	2	3	5
Cytomegalovirus	2	2	4
Non-TB Mycobacteria	2	1	3
Other	4	5	9

Deaths


Cause	Immediate	<u>Early</u>	<u>Total</u>
	(N=31)	(N=37)	(N=68)
<u>Tuberculosis</u>	14	7	21
AIDS Related			
Bacterial infection	3	7	10
Cryptococcus	2	3	5
CMV	1	1	2
MAC	1	1	2
Lymphoma	0	1	1
Toxoplasmosis	0	1	1
Non AIDS	6	10	16
Trauma/suicide/ingestion	2	2	4
<u>Unknown</u>	2	4	6

Grade 3 or 4 Clinical Events or Laboratory Abnormalities


<u>Event</u>	Immediate	<u>Early</u>	<u>Total</u>
Constitutional	8%	8%	8%
Respiratory	4%	4%	4%
Cardiac/Circulatory	3%	2%	2%
Gastrointestinal	4%	5%	5%
Skin	3%	3%	3%
Neurological	5%	7%	6%
ANC < 750/mm ^{3*}	9%	17%	13%
Hemoglobin	7%	5%	6%
Platelets <50,000/mm ³ *	<1%	3%	2%
Liver transaminase > 5x ULN	6%	10%	8%
ANY	44%	47%	46%
*P<0.05 for ANC and pla	atelets, all other N	IS	×

HIV RNA and CD4 Responses

Week 24 Week 32 Week 48 Week 8 Week 16

HIV RNA suppression 74% at 48 weeks No difference between arms

CD4 change 156 cells: entry to week 48 No difference between arms

Frequency and Predictors of MTB IRIS

	equency ¹ MTB IRIS	Pre	edictor		<u>Hazar</u> (95% C		P Value
Immediate ART	43 (11%)	Imr	nediate	ART	2.5 (1.4,	4.2)	0.001
Early ART	19 (5%)	ні	' RNA H	ligher	1.8 (1.2,	2.7)	0.007
		Со	nfirmed	I TB ²	3.6 (2.0,	6.6)	<0.001
¹ P=0.002			cox analy ersus pro		tivariate an ot TB	alysis	

Summary

- Overall, immediate ART did not reduce AIDSdefining illnesses and death compared to early ART
- However, for persons with CD4+ counts< 50/mm³, immediate ART reduced mortality/AIDS
- Grade 3 or 4 toxicities did not differ between arms
- No differences in HIV RNA suppression rates (74%) or CD4 rise between arms
- TB IRIS was higher in immediate vs early arms

When to Start ART in TB – Building on previous studies

	A5221/ STRIDE		SAPIT ²
Ν	806	660	429
Sites	Africa, Asia, S Am, N Am	Cambodia	S. Africa
Arms	lmm vs <u>8-12 wk</u>	Imm vs <u>8 wk</u>	Early vs <u>24 wk</u>
Endpt	↓Death/AIDS <50 CD4	Death	Death
CD4 (IQR)	77 (36,145)	25 (11,56)	150 (77, 254)

¹ Blanc, IAC, 2010 ²Abdool Karim, NEJM, 2010

Conclusions

- Both immediate and early ART strategies are safe and do not jeopardize CD4 or viral suppression rates
- In patients with CD4 <50, ART should be started within 2 weeks- delays increase AIDS/death
- TB IRIS is more common in those receiving immediate ART, but does not increase mortality
- Implementation of these findings should be a high priority in HIV and TB programs and will require coordination with hospital and outpatient programs

Acknowledgments

- Study patients, families and care providers
- Other 5221 STRIDE team members: Fran Aweeka, Eva Purcelle, Ana Martinez, Travis Behm, Patricia Anthony, Janet Nicotera, Margaret Mensah-King, Stephanie Warner, Christina Blanchard, Xingye (Shirley) Wu
- Carol Suckow and Lynne Jones, Data Managers
- HIV and TB care programs
- Veronica Miller, Forum for Collaborative Research
- NIAID, Richard Hafner
- Members of the DSMB
- Gilead Sciences and Merck Pharmaceuticals

