Lipids to detect tuberculosis?

prifysgol BANGOR university

Chris Gwenin c.d.gwenin@bangor.ac.uk

New Diagnostics Working Group

Mycolic acids

Prof. M. Baird m.baird@bangor.ac.uk

Different Mycobacteria have their own unique Mycolic Acid (MA) compositions

Three main classes of MA for *M. Tuberculosis*

Cord Factors (sugar esters)

(trehalose dimycolate, TDM)

We now have > 60 individual isomers to test!

Encouraging literature

Complex natural mixtures of cord factors can be used as an antigen for TB

(Yano et al 1991)

Isolated MA sub-classes are recognised by IgG antibodies

(Pan et al 1999)

Natural MA can be used as an antigen for TB in the presence of HIV-AIDS

(Verschoor et al 2002)

Can we improve on this with synthetic single isomers?

For research on diseases of poverty

Special Program for Research and Training in Tropical Deceases

Patent No. WO 2012/153111 A1

ELISA results from a blind study of 350 WHO TB indigenous samples

Vaccination does not interfere

Different single synthetic MA and their derivatives give differential responses

Our best antigen gave 85% Sensitivity and 85% Specificity

UK negatives are much cleaner

Country variations!

By using two antigens with a set of Gambia samples we used a 'traffic light' system that gave 100 % Sensitivity 91 % Specificity

From a clinical setting to the field We have taken 4 additional approaches

1. Evanesce

On 350 blind samples

73 % Sensitivity - 81 % Specificity

2. Impedance

Plus two PoC systems

Patent No. 1101021.2 – Filed 2013

Patent No. WO 2012/131394 A1

Assay development

Dr. Pitts

Look for a change in the absorbance

Colour response within minutes

Positive Negative

Sensor development

Particle secondary antibody conjugate

Lipid Antigens

Sera containing the antibodies of interest are added

Patent No. 1414369.7 – Filed 2014

The second stage of the development will have extra controls built into the application to take account of variations in lighting

Imminent work

The flow through device needs optimizing in conjunction with the phone application

We will then test the known 350 WHO serum samples

Most likely re-optimize

Then test 200 of FINDs blind serum samples

Conclusions

Lipid antigens do detect TB antibodies We get different responses for different mycobacterial infections The response is dependent on which lipid antigens are used We can get a result in under 10 mins, which is readable by eye and/or by phone for under 10\$ Needs no external power supply The response is not affected by BCG and does not appear to give a signal from latent TB

Thanks you for your attention

wrop & Chymru: Buddsoddi yn eich dyfodo Cronfa Datblygu Rhanbarthol Ewrop Europe & Wales: Investing in your future European Regional Development Fund

