Xpert MTB/Rif What place for TB diagnosis in MSF projects?

Francis Varaine, MSF

Geneva, 29/11/10

Introduction

Excellent performances, rapid results, and easy to use

Questions

- Where and how are we going to use it?
- Will it be available for those most in need?
- Will it be adapted to field conditions?
- What will be the impact?

Introduction

• Excellent performances, rapid results, and easy to use

Questions

- Where and how are we going to use it?
- Will it be available for those most in need?
- Will it be adapted to field conditions?
- What will be the impact?

Background

TB in MSF projects

- Total 30.000 TB cases per year
 - 70 projects in 40 countries
 - Various types of projects (TB vertical, TB-HIV, PHC...)
- MDR TB 1000 cases per year
- Various epidemiologic settings
 - High and low HIV prevalence
 - "High" and "low" MDR TB prevalence

Priorities

- High HIV and "low" MDR TB prevalence (Eastern Africa)
- High HIV and "high" MDR TB prevalence (Southern Africa)
- "High" MDR TB prevalence (Caucasus, Central Asia)

For each type of setting specific questions

High HIV, «Iow» MDR TB prevalence

Main objective : improve TB detection

Example Homa-Bay (Kenya) *

- 33% PTB M-, 75% HIV+, prevalence MDR TB : 1.4 %
- Culture+ in 18% of smear negative TB suspects (519/2823)
- 2/3 of culture+ patients not detected by clinical algorithms (320/500)

• Xpert to be performed 3 times in >80% of TB suspects?

- 27% of smear- started on treatment not confirmed by culture (120/451)
- Culture is an imperfect gold-standard

Need for clear articulation with clinical algorithms

* Huerga H. et al. Added value of culture in the diagnosis of TB in smear negative suspects high HIV prevalence area. Union conference, Berlin 2010

«High» MDR TB, high HIV prevalence

Additional objective : rapid MDR TB detection

Milayelitsila (SA)		
	NC	PTC
N (%)	269	261
Full suscept	236 (88.0)	223 (84.0)
MDR	14 <mark>(5.2)</mark>	20 (7.7)
63% HIV +		

Khayelitsha (SA)*

*Cox HS, et al. (2010) Epidemic Levels of Drug Resistant Tuberculosis (MDR and XDR-TB) in a High HIV Prevalence Setting in Khayelitsha, South Africa. PLoS ONE 5(11): e13901.

«High» MDR TB, high HIV prevalence

Additional objective : rapid MDR TB detection

Knayelitsha (SA)"		
	NC	PTC
N (%)	269	261
Full suscept	236 (88.0)	223 (84.0)
MDR	14 <mark>(5.2)</mark>	20 <mark>(7.7)</mark>
00 0/ 110/		

Khavalitaha (CA)*

63% HIV +

- PPV for Rif resistance in demonstration studies was 72-85 % in sites with prevalence between 4.4 and 6.6%
- Updated version of Xpert? *
- Rif resistance to be confirmed by conventional techniques

*Boehme C. Feasibility and impact of using Xpert MTB/Rif: results from demonstration studies. Berlin 2010

«High» MDR TB prevalence

Main objective : rapid MDR TB detection

	Ναιακαιμακδιατί	
	NC	PTC
N (%)	106	107
Full suscept	55 (51.9)	21 (19.6)
MDR	14 <mark>(13.2)</mark>	43 (40.2)

Karakalnaketan*

*HS Cox, et al Multidrug-resistant Tuberculosis in Central Asia. Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 10, No. 5, May 2004

«High» MDR TB prevalence

Main objective : rapid MDR TB detection •

	narakaipakstan	
	NC	РТС
N (%)	106	107
Full suscept	55 (51.9)	21 (19.6)
MDR	14 (13.2)	43 (40.2)
H(ESZ)	25 <mark>(23.6)</mark>	30 <mark>(28.0)</mark>

Karakalnaketan*

Need for conventional DST to detect DR TB other than MDR TB

*HS Cox, et al Multidrug-resistant Tuberculosis in Central Asia. Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 10, No. 5, May 2004

Other key issues

- Access for those most in need
 - Cost
 - Availability

Operational aspects in field conditions

- Electricity
- Maintenance and calibration
- Storage conditions
- Waste management

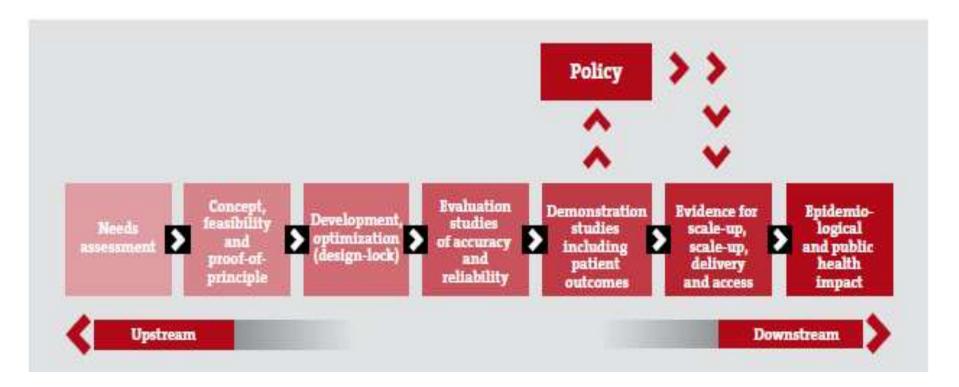
Large impact studies needed

"The ultimate impact of any tuberculosis test should be measured by its capacity to generate a beneficial therapeutic outcome in as many patients as possible"*

* New Diagnostics Working Group of the Stop TB Partnership: Pathways to better Diagnostics for Tuberculosis A blueprint for the development of TB diagnostics

Conclusion

MSF will introduce Xpert in a phased manner


- How to articulate with other diagnostic tools?
- Operational constraints and cost-effectiveness?

Potential significant improvement in TB diagnosis

Point-of-care non-sputum based test needed

- All forms of TB including extra-pulmonary TB and patients unable to produce sputum (children)
- Rapid and usable at most peripheral level

What will be the impact?

Impact studies needed