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Introduction
In 2021, the World Health Organization (WHO) issued recommendations for the use of artificial
intelligence (AI), affirming the technology could be used instead of human readers for the interpretation of
chest radiograph (CXR) images for the screening and triage of tuberculosis (TB), marking a historic
precedent for a guideline on AI in health [1]. The forward-looking guidance highlights the utility of CXR
in TB, despite past reluctance from WHO to use it in TB programmes [2]. Employing CXR in a diagnostic
algorithm can identify people with subclinical TB who are asymptomatic but have lung pathology
suggestive of TB, and refer them for testing and diagnosis [3]. CXR can also greatly reduce the number of
confirmatory tests required, which can save costs for TB programmes and prevent unnecessary
inconvenience for patients [4]. The limitations to the use of CXR for TB have generally been due to a lack
of equipment or a trained reader [5, 6]. Radiologists, or even well-trained physicians, are not always easy
to find, especially in high TB burden areas outside of major cities [7].

The use of AI for interpreting CXR images has come a long way in a short period of time. Early studies of
the first software showed promise when first appearing just a decade ago [8], but the technology fell short
when compared to expert radiologists and the comparatively high cost was an issue [9]. Since 2017,
several studies have documented good performance of multiple AI solutions for the interpretation of CXRs
in the screening or triage of TB [10–13], with newer versions continuing to improve [14, 15]. Nonetheless,
the technology is still relatively new, and many questions about it remain unanswered, especially regarding
its performance and programmatic implementation.

What is the correct comparison for AI?
CXR produces an image that needs to be interpreted by a radiologist or physician. AI provides CXR
interpretation in lieu of such a read; thus, evaluations of the technology should include a human reader
comparison. Such a human comparison is critical in decision-making when evaluating AI products, as we
know that human readers have high levels of both intra- and inter-reader variability, meaning one reader
often interprets images differently to others, and the same reader may also interpret the same image
differently upon reading again [16]. AI products can provide consistency to the reads, but different AI
products may provide different interpretations for the same images.

When evaluations of AI benchmark performance of CXR to Xpert or culture, the sensitivity and specificity
of CXR is measured against microbiological evidence of TB, not the interpretation of images. While AI
has been shown to have variable performance in different populations, in such comparisons, human readers
often do not perform well either and so, a head-to-head evaluation is critical [10, 17–19]. Ultimately, the
programmatic decision is whether AI should be used in the absence of a human to interpret CXR, not as a
replacement for microbiological testing.

What are the use cases?
The initial WHO recommendations focus on TB screening and triage use cases among adults aged
15 years and above [1]. However, there are many variations and setups through which implementers can
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deploy AI for CXR [20]. Currently, most of the field implementation is in active case-finding efforts where
large volumes of CXRs must be interpreted quickly, and often in remote regions without typical healthcare
infrastructure [21]. Some programmes conduct screening without any human reader on site [22], while in
other settings, it is a legal requirement to have a radiologist interpret it with the assistance of AI [23]. AI
can be used in TB prevalence surveys or active case-finding campaigns where CXR plays a critical role in
identifying people with TB who are not symptomatic [24]. AI can also be used together with human
readers to improve performance, as a quality control measure, and to reduce workload for experienced
readers in high volume situations [25]. It is important to note that most people with chest conditions will
not have TB, and providing an interpretation of the CXR beyond TB could be ultimately far more
impactful for both patients and health systems with limited resources.

How to choose the best threshold score
Human readers generally provide a dichotomous conclusion: whether findings are consistent with TB or
not. In the application of AI for CXR interpretation, the reading produces an abnormality score as a
continuous variable on a 0–1 or 1–100 scale. These outputs represent the likelihood of having TB, with
positive predictive values of microbiological test positivity increasing as abnormality scores increase
[26, 27]. This also offers programmes flexibility in deployment, depending on the objectives and
limitations of the intervention. For instance, a TB prevalence survey may want more relaxed criteria (a
lower threshold) to ensure as many people as possible with TB can be identified, while an active
case-finding initiative with a single molecular testing platform may need to limit the number of people sent
for testing due to logistical and throughput constraints, and so may choose a higher threshold. Therefore,
the optimal threshold is context-specific [28], and dependent upon programmatic variables such as budget
and time [20]. Flexibility to choose an “optimal” threshold is an additional advantage of AI systems, as
human readers will likely struggle to adapt consistent reading approaches to different settings and
instructions. Although AI products may provide a default threshold score, local threshold calibration is
strongly encouraged [26].

What is the utility in childhood TB diagnosis?
The current WHO guidelines on AI to interpret CXR do not include children aged below 15 years [1].
Children with TB are missed in far greater proportions than adults, with current estimates indicating that
around half of incident TB cases are being missed, which directly contributes to high mortality among
children [29, 30]. The difficulties of linking more children to TB care are well-documented, and include
poorly sensitive tests, a reliance on sputum or other respiratory specimen testing, limited contact-tracing
and a paucity of physicians confident in making a TB diagnosis [31]. Having a CXR suggestive of TB is a
major part of the consensus diagnostic algorithm for children with TB [32], yet many children and their
caregivers have to travel long distances to find a physician to read paediatric CXR images and assist in
diagnosis. In many countries, childhood TB diagnosis is concentrated in a few select hospitals [33, 34]. AI
algorithms that could support TB diagnosis in children in decentralised sites could potentially be a huge
step forward in improving access to life-saving treatment.

Before their deployment in paediatric cohorts, AI products require training data. Current versions of AI for TB
have used millions of adult CXR images for development, which are insufficient for child-focused software,
given that the presentation of TB in adults is often much different from TB in children (figure 1) [35]. The
lack of data for AI development is likely due to difficulty in obtaining labelled paediatric CXRs with a TB
diagnosis or ground truth, highlighting the need for establishing paediatric CXR libraries to train AI
software. We hope access to annotated paediatric CXR data through ongoing research, including
CAPTURE (Catalyzing AI for Pediatric Tuberculosis Research) [36] and Start4All (Start Taking Action
For TB Diagnosis) [37], can accelerate AI product development. Additionally, current AI tools are only
able to interpret a postero-anterior or antero-posterior film, and not lateral films, which can provide
additional support to clinical decision-making [35].

There have been only a handful of studies looking at the performance of AI for TB in children [38, 39], and
in this issue of European Respiratory Journal, EDEM et al. [40] present the findings of a study from the
Gambia, in which they collected CXR images from children with presumptive TB over a 10-year period. The
study evaluated the performance of the latest version of CAD4TB (Computer-Aided Detection for
Tuberculosis, Version 7; Delf Imaging, Hertogenbosch, the Netherlands) against a microbiological reference
standard. The authors also used Bayesian latent class analysis (BLCA) to address the shortcomings in data
completeness. They found that the software did not have high sensitivity at pre-defined abnormality thresholds.

The study marks a step in the right direction for the potential use of AI to help with childhood TB
diagnosis and highlights several important points to include in future studies. First, future studies should
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include head-to-head comparisons with human readers for programmatic guidance. These should also
explore variability of human readers in CXR interpretation as this may be even more striking when
interpreting CXR in children. Recent work from Zambia has shown high levels of variability among expert
radiologists when reading childhood CXR films [41]. Evaluations should include performance in
differentiating severity of TB among children, as non-severe TB can be treated with a shorter regimen.

Second, it is important to control for age in the evaluation of paediatric computer-aided detection products.
Just as the CXR images of adults and children look different, the radiographs of children aged under
15 years will vary widely as well, particularly in the youngest age group. While some AI companies claim
their products can be used in children as young as 2 years old, others specify a limit of 5 or 7 years and
above [42, 43]. If age is included in the CXR metadata for children younger than 5 years old, CAD4TBv7
will generate an error, while it will give a warning about interpretation if age is removed. Both the image
of the thorax and the presentation of TB will differ greatly depending on the age and development of the
child. Surprisingly, EDEM et al. [40] documented a marginally worse area under the curve in older children
than in those aged under 5 years, although with overlapping confidence intervals. This warrants further
exploration, because disease presentation in adolescents is likely to resemble that found in an adult.
Additionally, it may be beneficial to define populations as infants (aged less than 1 year old), children (1–4
and 5–9 years) and young adolescents (10–14 years) to better understand this variability.

Third, in this study, as with many other published results, the majority of children with TB are not
microbiologically confirmed. With the power that deep learning can bring to the field to improve
performance, we need to better understand what the software currently misses, and also what expert human
readers miss. The authors evaluated CAD4TB against a microbiological reference standard, but not a
composite standard. The AI software (and human readers) will identify people with TB that laboratory
tests will miss [44]. Follow-up studies that include children diagnosed on clinical grounds can provide
additional information to programmes and policymakers.

Although EDEM et al. [40] found AI to have a low sensitivity (19%) while focusing on a pre-determined
threshold score of 60, the software produced a sensitivity of 62.1% and a specificity of 70% using a
threshold of 40. Further, despite BLCA showing worse performance for the AI compared to Xpert and
culture, consideration of the use case is important. It is unlikely that CXR would be used in the same way
as it is used in active case-finding for adults, that is, to screen children out of a testing algorithm. Most
programmes will aim to provide children with several different tests to get the best clinical picture possible,
as per the National Institutes of Health consensus definition [32]. In this sense, CXR is being used as an
additional diagnostic tool, not a screening or triage test. Therefore, performance among children with

FIGURE 1 Chest radiographs of an adult (left) and child (right) with tuberculosis (TB). The adult radiograph
shows typical post-primary TB with opacities in the right upper zone and multiple cavities with a pleural
effusion on the right. In contrast, the child radiograph shows bilateral opacities in the perihilar regions,
suggestive of enlarged perihilar lymph nodes: the hallmark radiological feature of paediatric TB. Images
courtesy of M. Palmer at the Desmond Tutu TB Centre, Stellenbosch University, Cape Town, South Africa.
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microbiologically confirmed TB is less useful from a decision-to-treat standpoint. CXR performance for
children (either with human or AI interpretation) should be evaluated as part of an algorithm for treatment
decisions. Programmes need to know how well AI software performs when CXR results become a key part
of a treatment decision algorithm, i.e. can it be used to decide if the image is consistent with TB when
faced with negative microbiological results?

Conclusion
With sufficient data to consider guideline recommendations for children, the issue for implementers and
policymakers will be how CXR (with AI) fits into the diagnostic pathway, and what the value of the
findings are, ideally when compared to what humans would do. EDEM et al. [40] have started to build an
evidence base, and future research must take the subject of AI for CXR image interpretation in children
further to answer the basic question: can AI support or replace a human reader to help inform a decision
on treatment? If the answer is “yes”, it could greatly help provide more access to better diagnostic
algorithms for children with presumptive TB.
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